2020-01-03 09:56:53 268



Associate Professor, Principal Investigator




B.S., Stony Brook University, USA, 2003 

Ph.D. Stony Brook University, USA, 2010


Research interests:

Towards quantitative mechanistic prediction in biology: The main focus of our group is to determine how the genotype-to-phenotype map is modulated by both genetic and non-genetic heterogeneity. To do so we take a high-throughput quantitative systems biology approach to determine the genetic and non-genetic determinants of phenotypic variability, with a focus on evolution, gene expression, proliferation and drug resistance in single cells. The following are some examples of questions we’re working on:

(1) Why do identical mutations and drug treatments have different outcomes in different cells? Within an isogenic population not all microbes are killed by an antibiotic and not all cancer cells are killed by chemotherapy. In addition, the effect of a mutation varies across individuals; identical mutations often have no effect in some people but result in a severe disease phenotype in others. Why are only some individuals affected by a drug or mutation? 

(2) Machine learning to predict mutational impact in heterogeneous genetic backgrounds. The effect of each mutation depends on the genetic background in which it occurs. To discover fundamental principles that govern how genetic interactions determine phenotype we build large libraries containing millions of genetic variants and measure the phenotype of each genotype. To understand the resulting large multi-dimensional datasets, we develop novel machine-learning based approaches to quantify and predict the impact of each mutation on fitness?

(3) What mechanisms result in the predictable evolution of drug resistance during treatment? Some tumors, fungi and bacteria strains consistently and reproducibly acquire multidrug resistance in both patients and lab experiments, while others do not. Why? We are working to understand how the evolvability of various phenotypes is encoded in the genome.

Academic experiences:

2013-2018: Assistant Professor, Universitat Pompeu Fabra, Barcelona, Spain.

2010-2013: Postdoc with Eran Segal, Weizmann Institute of Science, Israel.

Selected publications:

1.  Schikora-Tamarit, MA ...  Carey, LB. Promoter activity buffering reduces the fitness cost of misregulation. Cell Reports. (2018).

2.  Espinar, L*, Schikora Tamarit, MÀ*, Domingo, J*Carey LB. Promoter architecture determines cotranslational regulation of mRNA. Genome Research. (2018).

3.  van Dijk, D*, Sharon, E*, … Segal, ECarey, LB. Large-scale mapping of gene regulatory logic reveals context-dependent repression by transcriptional activators. Genome Research. (2017).

4.  van Dijk, D, … Carey, LB. Slow-growing cells within isogenic populations have increased RNA polymerase error rates and DNA damage. Nature Communications. (2015).

5.  Carey, LB. RNA polymerase errors cause splicing defects and can be regulated by differential expression of RNA polymerase subunits. eLife. (2015).

6.  van Dijk, D., Manor, O. & Carey, LB. Publication metrics and success on the academic job market. Current Biology. (2014).

7.  Carey, LB*, van Dijk, D*… Segal, E. Promoter sequence determines the relationship between expression level and noise. PLoS Biology. (2013).